
Incrementalist User’s Manual
Copyright c© 2013 Robert Strandh Copyright c© 2024 Jan Moringen

i

Table of Contents

1 Introduction . 1

2 Representation of the Editor Buffer 2

3 Parsing using the Common Lisp Reader 3

4 Incremental Parsing . 4
4.1 Data Structures . 5

4.1.1 WADs . 5
4.1.2 Prefix and Suffix . 6

4.2 Moving Top-level Wads . 8
4.3 Incremental Update . 9

4.3.1 Processing Modifications . 10
4.3.2 Recreating the Cache . 15

Concept index . 16

Function and macro and variable and type index . . 17

1

1 Introduction

Incrementalist is a system for incrementally parsing Common Lisp code that has been
developed in the context of the Climacs editor for Common Lisp code and extracted into
its own system.

• We implemented a better buffer representation, and extracted it from the editor code
into a separate library named Cluffer (https://github.com/robert-strandh/
Cluffer). The new buffer representation has better performance, especially on large
buffers, and it makes it easier to write sophisticated parsers for buffer contents.

• The incremental parser for Common Lisp syntax of the first version of Climacs was
very hard to maintain, and while it was better than that of Emacs, it was still not good
enough. To improve upon those previous approaches, Incrementalist uses Eclector
(https://github.com/s-expressionists/eclector) in order to parse buffer con-
tents. Eclector is a library that implements the Common Lisp reader, but that can
also be customized in many ways. We take advantage of these capabilities to read
material that is normally skipped, like comments, and for error recovery. By using a
Common Lisp reader, we parse the buffer contents in the same way that the Common
Lisp compiler would.

• Incrementalist is independent of any particular library for making graphic user inter-
faces, allowing it to be configured with different such libraries.

https://github.com/robert-strandh/Cluffer
https://github.com/robert-strandh/Cluffer
https://github.com/s-expressionists/eclector
https://github.com/s-expressionists/eclector

2

2 Representation of the Editor Buffer

Incrementalist uses the Cluffer (https://github.com/robert-strandh/Cluffer) library
to represent its buffers. We briefly describe the essential aspects of that library below. For
detailed information on how it works, see the dedicated documentation.

Cluffer proposes two distinct protocols, namely the edit protocol and the update protocol.

• The edit protocol provides operations for editing the buffer contents. It has been
designed to be both simple and very efficient. As such, it does not provide operations
on larger chunks of contents such as regions. It provides operations only on single
items, and operations to split and join lines. These editing operations do not trigger
any view updates which is why they can be invoked a large number of times for each
user interaction without loss of performance. This feature is taken advantage of in
operations on regions and in keyboard macros.

• The update protocol is designed to be run at the frequency of the event loop. It is
based on the concept of time stamps. Any number of edit operations can be performed
between two invocations of the update protocol, and the update protocol can be in-
voked at different times for different views, including very rarely for views that are not
currently on display. Given that the amount of data displayed in a view is relatively
modest, no attempt is made to minimize the modifications to the view. The smallest
unit of an update is a line of items.

https://github.com/robert-strandh/Cluffer

3

3 Parsing using the Common Lisp Reader

We use a special version of the Common Lisp reader, i.e., Eclector (https://github.com/
s-expressionists/eclector), to parse the contents of a buffer. We use a special version
of the reader for the following reasons:

• We need a different action from that of the standard reader when it comes to interpret-
ing tokens. In particular, we do not necessarily want the incremental parser to intern
symbols automatically, and we do not want the reader to fail when a symbol with an
explicit package prefix does not exist or when the package corresponding to the package
prefix does not exists.

• We need for the reader to return not only a resulting expression, but an object that
describes the start and end locations in the buffer where the expression was read.

• The reader needs to return source elements that are not returned by an ordinary reader,
such as comments and expressions that are skipped by certain other reader macros.

• The reader can not fail but must instead recover in some way when either some invalid
syntax is encountered, or when end of file is encountered in the middle of a call.

https://github.com/s-expressionists/eclector
https://github.com/s-expressionists/eclector

4

4 Incremental Parsing

As mentioned in Chapter 2 [Representation of the Editor Buffer], page 2, the general control
structure for buffer modifications and incremental updates was designed with the following
goals:

• Most editing operations should be very fast, even when they involve fairly large chunks
of buffer contents. Here, fast means that the response time for interactive editing
should be short.

• From a software-engineering point of view, the buffer editing operations should not be
aware of the presence of any views.

Notice that it was not a goal that editing operations use as little computational power as
possible.

Input events can be divided into two categories:

• Input events that result in some modification to some buffer contents. Inserting and
deleting items are in this category. Modifications can be the result of indirect events
such as executing a keyboard macro that inserts or deletes items in one or more buffers.

• Input events that have no effect on any buffer contents. Moving a cursor, changing the
size of a window, or scrolling a view are typical events in this category. These events
influence only the view into a buffer.

When an event in the first category occurs, the following chain of events is triggered:

1. The event itself triggers the execution of some command that causes one or more items
to be inserted and/or deleted from one or more buffers. Whether this happens as
a direct result or as an indirect result of the event makes no difference. The buffers
involved are modified, but no other action is taken at this time. Lines that are modified
or inserted are marked with the current time stamp and the current time stamp is
incremented, possibly more than once.

2. At the end of the execution of the command, the syntax update is executed for all
buffers, allowing the contents to be incrementally parsed according to the syntax asso-
ciated with the buffer.

warning: There seem to be cases where the syntax of one buffer depends not
only on its own associated buffer, but also on the contents of other buffers.
It is not a big problem if the dependency is only on the contents of other
buffers, but if the dependency is also on the result of the syntax analysis
of other buffers, then one syntax update might invalidate another. In that
case, it might be necessary to loop until all analyses are complete. This can
become very complicated because there can now be circular dependencies
so that the entire editor gets caught in an infinite loop.

Finally, visible views are repainted using whatever combination they want of the buffer
contents and the result of the syntax update. The syntax update uses the time stamps
of lines in the buffer and of the previous syntax update to compute an up-to-date rep-
resentation of the buffer. This computation is done incrementally as much as possible.

3. Each view on display recomputes the data presented to the user and redraws the asso-
ciated window. Again, time stamps are used to make this computation as incremental
as possible.

Chapter 4: Incremental Parsing 5

4.1 Data Structures

4.1.1 WADs

We call the data structure for storing the (modified) return value of the reader together
with start and end location a wad. It contains the following slots:

• The start and the end location of the wad in the buffer. The start line number within
this location information is either absolute which means that it directly corresponds
to a line number of the underlying buffer or relative which means that it represents an
offset from the start line number of a parent or sibling wad. A dedicated slot indicates
whether the start line number is relative or absolute.

• The “raw” expression that was read, with some possible modifications. Tokens, in
particular symbols, are not represented as themselves for reasons mentioned above.

• A list of children. These are wads that were returned by recursive calls to the reader.
The children are represented in the order they were encountered in the buffer. This
order may be different from the order in which the corresponding expressions appear
in the expression resulting from the call to the reader. Furthermore, the descendants
of a given wad can contain wads which correspond to source elements that would not
be present in the s-expression tree returned by cl:read at all such as comments or
expressions guarded by feature expressions.

The representation of a wad is shown in Figure 4.1.

...

start-column

start-line height

end-column

raw
(from CST library)

children

relative-p
token or

s-expression

parent left-sibl. right-sibl.

Figure 4.1: Representation of a wad. The major components are highlighted: location
information in green, tree structure information in blue and “raw” information in orange.
Not all wad classes contain children and “raw” data. The faintly rendered tree structure
slots are computed on-demand and are thus always present but not always bound.

A location in the buffer is considered a top-level location if and only if, when the buffer is
parsed by a number of consecutive calls to read, when this location is reached, the reader
is in its initial state with no recursive pending invocations. Similarly A wad is considered
a top-level wad if it is the result of an immediate call to read, as opposed to of a recursive
call.

Chapter 4: Incremental Parsing 6

Let the initial character of some wad be the first non-whitespace character encountered
during the call to the reader that produced this wad. Similarly, let the final character of
some wad be the last character encountered during the call to the reader that produced
this wad, excluding any look-ahead character that could be un-read before the wad was
returned.

The value of the start-line slot for a wad w is computed as follows:

• If w is [term-absolute], page 5, which is the case if and only if w is one of the top-level
wads in the prefix (see Section 4.1.2 [Prefix and Suffix], page 6) or the first top-level
wad in the suffix, then the value of this slot is the absolute line number of the initial
character of w. The first line of the buffer is numbered 0.

• Otherwise w is [term-relative], page 5, which is the case for different kinds of placements
of w in the overall hierarchical structure of wads:

• If w is a top-level wad in the suffix other than the first one, then the value of
this slot is the number of lines between the value of the slot start-line of the
preceding wad and the initial character of w. A value of 0 indicates the same line
as the start-line of the preceding wad.

• If w is the first in a list of children of some parent wad p, then the value of this
slot is the number of lines between the start line of p (which is different from the
value of the start-line slot of p if p is itself relative) and the initial character of
w.

• If w is the child other than the first in a list of children of some parent wad, then
the value of this slot is the number of lines between the start line of the preceding
sibling wad and the initial character of w.

The value of the slot height of some wad w is the number of lines between the start line
of w and the final character of w. If w starts and ends on the same line, then the value of
this slot is 0.

The value of the slot start-column is the absolute column number of the initial character
of this wad. A value of 0 means the leftmost column.

The value of the slot end-column is the absolute column number of the final character of
the wad.

4.1.2 Prefix and Suffix

Incrementalist maintains a sequence1 of top-level wads. This sequence is organized as two
ordinary Common Lisp lists, called the prefix and the suffix. Given a top-level location L
in the buffer, the prefix contains a list of the top-level wad that precede L and the suffix
contains a list of the top-level wads that follow L. The top-level wads in the prefix occur in
reverse order compared to order in which they appear in the buffer. The top-level wads in
the suffix occur in the same order as they appear in the buffer. the location L is typically
immediately before or immediately after the top-level expression in which the cursor of the
current view is located, but that is not a requirement. Figure 4.2 illustrates the prefix and
the suffix of a buffer with five top-level expressions.

1 It is not a Common Lisp sequence, but just a suite represented in a different way.

Chapter 4: Incremental Parsing 7

(top-level expression 1)

(top-level expression 5)

(top-level expression 4)

(top-level expression 3)

(top-level expression 2)

prefix

suffix

absolute
top-level
wads

relative
top-level
wads

Figure 4.2: Prefix and suffix containing top-level wads.

Either the prefix or the suffix or both may be the empty list. The location L may be moved.
It suffices2 to pop an element off of one of the lists and push it onto the other.

To illustrate the above data structures, we use the following example:

...

34 (f 10)

35

36 (let ((x 1)

37 (y 2))

38 (g (h x)

39 (i y)

40 (j x y)))

41

42 (f 20)

...

2 Some slots also need to be updated as will be discussed later.

Chapter 4: Incremental Parsing 8

Each line is preceded by the absolute line number. If the wad starting at line 36 is a member
of the prefix or if it is the first element of the suffix, it would be represented like this:

36 04 (let ((x 1) (y 2)) (g (h x) (i y) (j x y)))

00 01 ((x 1) (y 2))

00 00 (x 1)

01 00 (y 2)

02 02 (g (h x) (i y) (j x y))

00 00 (h x)

01 00 (i y)

02 00 (j x y)

Since column numbers are uninteresting for our illustration, we show only line numbers.
Furthermore, we present a list as a table for a more compact presentation.

4.2 Moving Top-level Wads

Occasionally, some top-level wads need to be moved from the prefix to the suffix or from
the suffix to the prefix. There could be several reasons for such moves:

• The place between the prefix and the suffix must always be near the part of the buffer
currently on display when the contents are presented to the user. If the part on display
changes as a result of scrolling or as a result of the user moving the current cursor,
then the prefix and suffix must be adjusted to reflect the new position prior to the
presentation.

• After items have been inserted into or deleted from the buffer, the incremental parser
may have to adjust the prefix and the suffix so that the altered top-level wads are near
the beginning of the suffix.

These adjustments are always accomplished by repeatedly moving a single top-level wad.

To move a single top-level wad P from the prefix to the suffix, the following actions are
executed:

1. Modify the slot start-line of the first wad of the suffix so that, instead of containing
the absolute line number, it contains the line number relative to the value of the slot
start-line of P .

2. Pop P from the prefix and push it onto the suffix. Rather than using the straightforward
technique, the cons cell referring to P can be reused so as to avoid unnecessary consing.

To move a single top-level wad P from the suffix to the prefix, the following actions are
executed:

1. If P has a successor S in the suffix, then the slot start-line of S is adjusted so that
it contains the absolute line number as opposed to the line number relative to the slot
start-line of P .

2. Pop P from the suffix and push it onto the prefix. Rather than using the straightforward
technique, the cons cell referring to P can be reused so as to avoid unnecessary consing.

We illustrate this process by showing four possible top-level locations in the example buffer.
If all three top-level wads are located in the suffix, we have the following situation:

prefix

...

Chapter 4: Incremental Parsing 9

suffix

34 00 (f 10)

02 04 (let ((x 1) (y 2)) (g (h x) (i y) (j x y)))

06 00 (f 20)

...

In the example, we do not show the children of the top-level wad.

If the prefix contains the first top-level expression and the suffix the other two, we have the
following situation:

prefix

...

34 00 (f 10)

suffix

36 04 (let ((x 1) (y 2)) (g (h x) (i y) (j x y)))

06 00 (f 20)

...

If the prefix contains the first two top-level expressions and the suffix the remaining one,
we have the following situation:

prefix

...

34 00 (f 10)

36 04 (let ((x 1) (y 2)) (g (h x) (i y) (j x y)))

suffix

42 00 (f 20)

...

Finally, if the prefix contains all three top-level expressions, we have the following situation:

prefix

...

34 00 (f 10)

36 04 (let ((x 1) (y 2)) (g (h x) (i y) (j x y)))

42 00 (f 20)

suffix

...

4.3 Incremental Update

Modifications to the buffer are reported at the granularity of entire lines. The following
operations are possible:

• A line may be modified.

• A line may be inserted.

• A line may be deleted.

Several different lines may be modified between two incremental updates, and in differ-
ent ways. The first step in an incremental update step is to invalidate wads that are no
longer known to be correct after these modifications. This step modifies the data structure
described in Section 4.1.2 [Prefix and Suffix], page 6, in the following way:

Chapter 4: Incremental Parsing 10

• After the invalidation step, the prefix contains the wad preceding the first modified
line, so that these wads are still valid.

• The suffix contains those wads following the last modified line. These wads are still
valid, but they may no longer be top-level wads, because the nesting may have changed
as a result of the modifications preceding the suffix.

• An additional list of residual wads is created. This list contains wads that have not
been invalidated by the modifications, i.e. that appear only in lines that have not been
modified.

The order of the wads in the list of residual wads is the same as the order of the wads in
the buffer. The slot start-line of each wad in the list is the absolute line number of the
initial character of that wad.

Suppose, for example, that the buffer contents in our running example was modified so that
line 37 was altered in some way, and a line was inserted between the lines 39 and 40. As a
result of this update, we need to represent the following wads:

...

34 (f 10)

35

36 (x 1)

37

38 (h x)

39 (i y)

40

41 (j x y)

42

43 (f 20)

...

In other words, we need to obtain the following representation:

prefix

...

34 00 (f 10)

residual

36 00 (x 1)

38 00 (h x)

39 00 (i y)

41 00 (j x y)

suffix

43 00 (f 20)

...

4.3.1 Processing Modifications

While the list of residual wads is being constructed, its elements are in the reverse order.
Only when all buffer updates have been processed is the list of residual wads reversed to
obtain the final representation.

Chapter 4: Incremental Parsing 11

All line modifications are reported in increasing order of line number. Before the first
modification is processed, the prefix and the suffix are positioned as indicated above, and
the list of residual wads is initialized to the empty list.

The following actions are taken, depending on the position of the modified line with respect
to the suffix, and on the nature of the modification:

• If a line has been modified, and either the suffix is empty or the modified line precedes
the first wad of the suffix, then no action is taken.

• If a line has been deleted, and the suffix is empty, then no action is taken.

• If a line has been deleted, and it precedes the first wad of the suffix, then the slot
start-line of the first wad of the suffix is decremented.

• If a line has been inserted, and the suffix is empty, then no action is taken.

• If a line has been inserted, and it precedes the first wad of the suffix, then the slot
start-line of the first wad of the suffix is incremented.

• If a line has been modified and the entire first wad of the suffix is entirely contained in
this line, then remove the first wad from the suffix and start the entire process again
with the same modified line. To remove the first wad from the suffix, first adjust the
slot start-line of the second element of the suffix (if any) to reflect the absolute start
line. Then pop the first element off the suffix.

• If a line has been modified, deleted, or inserted, in a way that may affect the first wad of
the suffix, then this wad is first removed from the suffix and then processed as indicated
below. Finally, start the entire process again with the same modified line. To remove
the first wad from the suffix, first adjust the slot start-line of the second element of
the suffix (if any) to reflect the absolute start line. Then pop the first element off the
suffix.

Modifications potentially apply to elements of the suffix. When such an element needs to
be taken apart, we try to salvage as many as possible of its descendants. We do this by
moving the element to a worklist organized as a stack represented as an ordinary Common
Lisp list. The top of the stack is taken apart by popping it from the stack and pushing its
children. This process goes on until either the top element has no children, or it is no longer
affected by a modification to the buffer, in which case it is moved to the list of residual
wads.

Let us see how we process the modifications in our running example.

Line 37 has been altered, so our first task is to adjust the prefix and the suffix so that the
prefix contains the last wad that is unaffected by the modifications. This adjustment results
in the following situation:

prefix

...

34 00 (f 10)

residue

worklist

suffix

36 04 (let ((x 1) (y 2)) (g (h x) (i y) (j x y)))

06 00 (f 20)

...

Chapter 4: Incremental Parsing 12

The first wad of the suffix is affected by the fact that line 37 has been modified. We must
move the children of that wad to the worklist. In doing so, we make the start-line of
the children reflect the absolute line number, and we also make the start-line of the next
wad of the suffix also reflect the absolute line number. We obtain the following situation:

prefix

...

34 00 (f 10)

residue

worklist

36 01 ((x 1) (y 2))

38 02 (g (h x) (i y) (j x y))

suffix

42 00 (f 20)

...

The first element of the worklist is affected by the modification of line 37. We therefore
remove it from the worklist, and add its children to the top of the worklist. In doing so,
we make the start-line of those children reflect absolute line numbers. We obtain the
following situation:

prefix

...

34 00 (f 10)

residue

worklist

36 00 (x 1)

37 00 (y 2)

38 02 (g (h x) (i y) (j x y))

suffix

42 00 (f 20)

...

The first element of the worklist is unaffected by the modification, because it precedes the
modified line entirely. We therefore move it to the residue list. We now have the following
situation:

prefix

...

34 00 (f 10)

residue

36 00 (x 1)

worklist

37 00 (y 2)

38 02 (g (h x) (i y) (j x y))

suffix

42 00 (f 20)

...

The first wad of the top of the worklist is affected by the modification. It has no children,
so we pop it off the worklist.

Chapter 4: Incremental Parsing 13

prefix

...

34 00 (f 10)

residue

36 00 (x 1)

worklist

38 02 (g (h x) (i y) (j x y))

suffix

42 00 (f 20)

...

The modification of line 37 is now entirely processed. We know this because the first wad
on the worklist occurs beyond the modified line in the buffer. We therefore start processing
the line inserted between the existing lines 39 and 40. The first item on the worklist is
affected by this insertion. We therefore remove it from the worklist and push its children
instead. In doing so, we make the start-line slot those children reflect the absolute line
number. We obtain the following result:

prefix

...

34 00 (f 10)

residue

36 00 (x 1)

worklist

38 00 (h x)

39 00 (i y)

40 00 (j x y)

suffix

42 00 (f 20)

...

The first element of the worklist is unaffected by the insertion because it precedes the
inserted line entirely. We therefore move it to the residue list. We now have the following
situation:

prefix

...

34 00 (f 10)

residue

36 00 (x 1)

38 00 (h x)

worklist

39 00 (i y)

40 00 (j x y)

suffix

42 00 (f 20)

...

Once again, the first element of the worklist is unaffected by the insertion because it precedes
the inserted line entirely. We therefore move it to the residue list. We now have the following
situation:

Chapter 4: Incremental Parsing 14

prefix

...

34 00 (f 10)

residue

36 00 (x 1)

38 00 (h x)

39 00 (i y)

worklist

40 00 (j x y)

suffix

42 00 (f 20)

...

The first element of the worklist is affected by the insertion, in that it must have its line
number incremented. In fact, every element of the worklist and also the first element of
the suffix must have their line numbers incremented. Furthermore, this update finishes the
processing of the inserted line. We now have the following situation:

prefix

...

34 00 (f 10)

residue

36 00 (x 1)

38 00 (h x)

39 00 (i y)

worklist

41 00 (j x y)

suffix

43 00 (f 20)

...

With no more buffer modifications to process, we terminate the procedure by moving re-
maining wads from the worklist to the residue list. The final situation is shown here:

prefix

...

34 00 (f 10)

residue

36 00 (x 1)

38 00 (h x)

39 00 (i y)

41 00 (j x y)

worklist

suffix

43 00 (f 20)

...

Chapter 4: Incremental Parsing 15

4.3.2 Recreating the Cache

Once the cache has been processed so that only wads that are known to be valid remain,
the new buffer contents must be fully parsed so that its complete structure is reflected in
the cache.

Conceptually, we obtain a complete cache by applying read repeatedly from the beginning
of the buffer, until all top-level wad have been found. But doing it this way essentially for
every keystroke would be too slow. In this section we explain how the partially invalidated
cache is used to make this process sufficiently fast.

16

Concept index

E
edit protocol . 2

P
prefix . 6

S
suffix . 6

T
top-level location . 5
top-level wad . 5

U
update protocol . 2

W
wad . 5

17

Function and macro and variable and type index

(Index is nonexistent)

	1 Introduction
	2 Representation of the Editor Buffer
	3 Parsing using the Reader
	4 Incremental Parsing
	Data Structures
	WADs
	Prefix and Suffix

	Moving Top-level Wads
	Incremental Update
	Processing Modifications
	Recreating the Cache

	Concept index
	Function and macro and variable and type index

